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A muiti-grid domain decompaosition approach with the Schwarz
alternating procedure has been developed for the solution of flow
in complex geometries by the pseudospectral element method in
primitive variable form. The approach for flow prohlems is first to
divide the computational domain into a number of simple blocks
(fine-grid or coarse-grid subdomains) with the inter-cverlapping
zone, of which the overlapped grids may or may not be coincided
with each other. An isoparametric mapping is next to map each
hlock onto a simple square {or cube), where c® pseudospectral ele-
ments {quadrilateral or hexahedral}, generated by linearly interpo-
lating the shape function which defines the geomery of their parent
elements {bhlocks), are further used to partition the mapped domain.
Schwarz alternating procedure is used to exchange data among the
blocks, where the multi-grid {two grid} technique is implemented
to remove the high frequency error that occurs when the data inter-
polation from the fine-grid subdomain to the coarse-grid subdomain
is conducted. The solution of the pressure equation in each block
can be efficiently solved by the two-level preconditioned minimal
residual method in terms of eigenfunction expansion technique,
which greatly reduces the inverse of the preconditioned matrix to
the simplest “algebraic” form with the least storage requirement,
i.e., O{N?) in 3D and O{N?) in 2D. Numerical experiments have been
performed for both the two-dimensional flow over a cylinder in a
channel {Re = 100-1000} and three-dimensional bifurcation flow
(Re = 500} to account for the versatility of the proposed technique.
The shedding frequency behind a cylinder, Strouhal number in-
creases with increasing Reynolds number, which is different from
those found in a square cylinder. As for the bifurcating case, the
streamwise velocity profiles of the two-dimensional flow model
underestimates the three-dimensional results due to the negligence
of houndary effect. @ 1295 Academic Press, Inc.

1. INTRODUCTION

Classical fluid mechanics is an approximate description of
Nature having wide applicability; however, the nonlinearity of
its governing equations (the Navier—Stokes equations) makes
fluid flow difficult to understand. The difficulty is compounded
when the flow occurs in a domain with complicated geometry,
in which case insight must come from experiments or high
speed computer simulation. It is not unusual for a complicated
flow problem to require more than a million grid points. Even
the largest and most modern supercomputers will require huge
computing time for such a problem. But that level of calculation

still falls far short of a complete numerical attack on the equa-
tions of motion, and a lot of ingenuity and attention to computa-
tional economy is needed to make realistic simulations prac-
tical.

To address these goals, the desired features of numerical
methods should have (1) the ability to deal with the variety of
geometrical shapes that occur in practice; (2) the high resolution
in the interesting areas (locally adaptive scheme); (3) the mini-
mal working space associated with the problem; and (4) the
low running time of computation which requires the numerical
algorithms that are effective under the multiple processors
working environment. Even though the above requirements
sound impossible to be met, the fundamental principle still
motivates all researchers toward that direction.

How to generate appropriate computational grids is the main
issue we often encounter. Generally, grid networks with the
desired properties, the comformity close to the boundaries of
the region as well as the concentration of points to the area
where the steep change of the field variables ocecurs, can be
generated numerically by several techniques, all of which in-
volve mapping physical space (curvilinear coordinates) into a
computational space {Cartesian coordinates). When the two
coordinate systems are related by an explicit function, the map-
ping is called “‘algebraic.”” If the relationship takes the form of
adifferential equation, the term *‘equation-generated’ mapping
[1]is used. However, the ““isoparametric mapping”’ {2] method,
the same set of functions (shape functions) defining both the
geometry and the field variables, is adopted to this paper to
provide the computational grids.

Perhaps the most commonly used time-step splitting method
[3] of satisfying the continuity equation is with the aid of a
derived equation, namely the pressure equation Lp = §. The
pressure equation appearing in curvilinear coordinates contains
a nonseparable operator for which there is no easy way for a
direct selution, and it ts even more difficult in three-dimensional
cases. Another alternative for the pressure solution, L' Lp =
L.'§ is the iterative preconditioned minimal residual method
[4, 5], which has been widely used for the solution of partial
differential equations. An incomplete LU factorization of ma-
trix L is often chosen as the preconditioned matrix L., and
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it is constructed from the approximation of banded diagonal
elements based on the row sum equality rule [6]. Recently,
another promising research on the preconditioned minimal re-
sidual method for the solution of the sparse nonsymmetric linear
system has been presented by Xu et al. [7] who suggested that
even with a simple preconditioned matrix of L, like a block
diagonal matrix, the convergence rate has been significantly
improved by adding a parameter A(0 < A < 1) to the product
of the inverse of the preconditioned matrix L, and matrix L.
But in order to minimize the storage size (O(N?) in 3D) required
for the iterative pressure solution the eigenfunction expansion
technique [8] previously proposed by the author will be incorpo-
rated into the multi-level (two-level) preconditioned minimal
residual scheme of Xu et al. [7].

The Schwarz alternating procedure (SAP) iterative scheme
has long been used for the solution of boundary value problem,
solving problems on each subdomain separately and updating
the function value on the overlapped interfaces. The conver-
gence rate is proportional to the overlapping area; the more
overlapping area, the faster the convergence. The advantage of
the SAP scheme is easy to implement, but the iterative solution
for data exchange among subdomains is its disadvantage. How-
ever, the storage space toward the matrix manipulation, local
rather than global, is one of the least expensive schemes that
ever exist in nature. The SAP iterative scheme can also be
applied to the interface with patched grid, where the boundary
information needs to be calculated through the interpolation by
extending cne grid into the neighboring subdomain, except the
convergence rate is slow.

The SAP iterative scheme has been successfully applied to
those configurations where the overlapped grids coincide with
each other [9, 10] (referred to as a single grid hereafter). But
under some circumstances, due to the complexity of the geomet-
rical configuration, such as the submarine and automobile, pos-
sible layout of mixed types of grids like Cartesian, *“O”" and
““C’” among the subdomains, or the necessity of applying adap-
tive fine grids for high resolution in one subdomain and coarse
grids for less resolution in other subdomains, the overlapped
grids cannot be collapsed at the same position. As pointed out
by the authors [11] just by simply exchanging the data through
the interpolation in the inter-overlapping areas the high fre-
quency error introduced by the fine-grid subdomain will pollute
the results throughout the whole computational domain; it will
be especially pronounced for the flow at high Reynolds num-
bers. The multi-grid technigue, which has long been advocated
by the finite-difference users [12, 13], employs a sequence of
grids to accelerate the convergence of iterative methods. The
work rests on *‘standard coarsening,’’ i.e., doubling the mesh
in each directions from one grid to the next coarsest grid. Solve
the preblem on the coarse grid (low frequency domain) and
the coarse-grid correction transfers back (prolongation} to the
fine grid (high frequency domain} to gain rapid convergence.
The novel multi-grid {two grid) SAP [11] which was strictly
used in Cartesian coordinates will be adopted in this paper to
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eliminate the high frequency error that rzsults from the data
interpolation from the fine-grid (“‘O”" grid) subdomain to the
coarse-grid (Cartesian grid) subdomain,

The paper consists of six additional sections. In Section
2, a description of three-dimensional grid generation will be
addressed by the isoparametric mapping technique. Section 3
derives a primitive variable form of the Navier—Stokes equa-
tions in curvilinear coordinates. Section 4 constructs the precon-
ditioned matrix which facilitates the solution of a three-dimen-
sional pressure equation. Section 3 discusses the multi-grid SAP
to iteratively solve the inter-overlapping subdomains where the
overlapped grids are not located at the same places. Section 6
presents the detailed numerical results of proposed 2D and 3D
problems, and a final section provides the conclusions.

2. ISOPARAMETRIC MAFPPING

Let us first define the existence of a mapping function be-
tween the physical space (x, y, z) and the computational space
(& m, ) (a transformed space with Cartesian coordinates).
Once such coordinate relationships are known, shape functions
defining the geometry can be specified in local coordinates and
a one-to-one correspondence between Cartesian and curvilinear
coordinates can be established.

An isoparametric mapping, the same set of functions (shape
functions) used to define the field variables in an element also
being used to define the geometry is applied to map a three-
dimensional curved geometry (physical space) onto a cube
(computational space). The main objective of the present ap-
proach is to provide the three-dimensional computational grids
around complex geometries in a structured fashion. The grid
generation scheme presented here utilizes a multiple block
structure; namely, the global computational domain based on
the geometrical configuration is divided into a number of blocks
which overlap or not. Each block is then partitioned by the
pseudospectral elements. Implicitly, the grid generation is per-
formed in two levels. First, each of these blocks is defined
as a parent element. In other words, a parent element in the
rransformed space, —1 = § =1, -1 =79 =1, -1 =
{ = 1 (Fig. 1), corresponds to an irregular or regular six-
faced (hexahedrael) element (block) in the physical space. Next,
family elements, each of which contains Né + 1, Nn + 1, and
N{+ 1 collocation points (£ = f[cos miINE(&, — &) + & + &].
n; = glcos wiIND(n, — m) + m2 + M, L= Heos /NN, —
D+ L+ ohwhere =i =0, . NO= L, m =
=0, .. N} =m {=Lk=0,.,N{ = {,, lincarly
(or higher order} interpolating the shape function defining the
geometry of their parent elements (or blocks) are allocated
within each of these blocks. Once the collocation points (x, y,
z) along the curvy boundaries of each parent element are known,
the interior points (including the boundaries of the family ele-
ments) are interpolated by deforming the (£, n, {) mesh into
its (x, y, z) image using the ‘“‘trilinear blending function’” [14],
i.e., the grid points (x, y, ), in the physical space are mapped
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FiG. 1.

onto (§ = &, n = w;, { = £} in the transformed space,
The following summarizes the technique of an isoparametric
mapping for grid generation;

Let ¢ be any value of (x, y, z); the interpofation translates
the Booleam sum [15] into a form

¢=Pp+ P, o+ Prp— PP~ PPrp
— PP+ PP P,

0y

where the “‘projectors™ P, P, P, interpolate ¢ between two
opposing faces of the six-sided region, the double product pro-
jector, PP, interpolate ¢ in two directions from the four
edges along which £ and 7 are constant, and the triple product
projector, PP, P, interpolates ¢ from the eight corners,

With linear interpolation functions defined as

o =125 e = 12f
NU(q) = H'T"’ Ny = 1;2’7 2
Nog =125 e =124,

the explicit expressions for the face projectors are

Pep = NUES(, . ) + NHEHP(—1, 1, D)
Py =NUmMGE 1O+ NAmd€, —1,¢) 3)
Prp = NUOGE m, D+ NUOHE n, —1)

and the edge projectors are
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Three-dimensional isoparametric mapping of family elements.

PP = NUONU(m(L, 1, {) + NUOND(m(1, —1, )
+ NN (md(- 1,1, D
+ NHONDP(=1, -1, )

PePrp = NUHNT(P(1, m 1) + NUOHNOD (L, », — 1)
+ NAHONDDP(=1, 7, 1) )
+ NHONDDP(—1, 3, - 1)

PP = NOmNODHE L D) + NOUNDDPE 1, —1)
+ NOmNYDS(E, — 1, 1)
+ NN, —1, —1);

and the corner projector is

PP, P = NUENDNT((L, 1, 1)

+ NUONPMNO(D(1, 1, —1)

+ NUENImNID (1, -1, 1)
+ NONDNOS(, — 1, 1)

+ NAONOMNNDP(—1, 1, 1)

+ NAONIMNADS(—1, 1, 1)

+ NOEONONO(D(=1, =1, 1)
T NHENHMNADP(~1, —1, —1)

where the surface function ¢ (£, n, 1) can be adequately repre-
sented by an isoparametric tensor product such that

(62)

N
=0 j=0

Gé 1 1) =2, 2 NAON, (&, 1, 1)
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and, similarly for the edge function ¢(§, 1, 1),

M&LU=;M®W@JJ} (6b)

" Here N,(£), N;(n), the shape functions of each parent element
derived from the Chebyshev polynomials, read

N

Ni(&) = 20 T.(ET (&) (7a)
N A

N(m = 2 T, (mT.(n,), (7b)

where the matrices 7, (£) and T,.(£) are the Fourier cosine
series and their inverse [8]. Note that the shape functions N;(£),
N;(n) satisfy the Kronecker-delta property, i.e., Ni(£,) = S,
Ni(1,) = 6.

In an analogous manner, other undefined surface and edge
functions can be derived without any difficulty. It is obvious that
Eq. {6a) interpolates the surface boundary functions exactly.

Once the computational grids have been generated accord-
ing to the aforementioned isoparametric mapping technique,
the partial derivatives of a function f in the physical space
{x, y. z) can be obtained through the general coordinate trans-
formation; i.e., on the transformed coordinates, the partial deriv-
atives f., f.. can be represented by

(8a)
(8b)

ﬁ = g.rff + Tlen + é’xfij
f-:(:( = Ex(fr)f + nx(f:r)n + gx(f\’){,

where the subscript denotes the derivative and &,, 7., ¢, are
the metric coefficients, of which the explicit formulae will be
described in the section of primitive variable formulation. The
interfacial derivatives at the inter-element points between ele-
ment e and e + 1, or at the inter-block points, are approximated
by weighting of the derivatives from each side, namely,

fglinterfacc = afi + Bf‘?—l
ff._flinlerface =afi+ Bf%}" .

(9a)
(9b)

Choosing « and 8 to be their respective fraction of the total
length of two adjacent elements as described in [91, ¢° continuity
is implicitly satisfied for the second derivative calculation,
while ¢? continuity is explicitly assumed whenever the calcula-
tion of interface values of the first derivative is required. Simi-
larly, ¢° continuity for f,,, f;; stand, too.

In order to set up an efficient matrix operation for derivatives
JesJeerJos Fono Joo S Dy the pseudospectral element (PSE) method,
a global-typed differentiation operator, including those blocks
with same local coordinates, can be constructed by combining
each local element derivative [9].
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FIG. 2. A plot of the approximation error with four elements in the ¢
direction and three elements in the # direction. Herz £ = || fuumencs — foxactll+
and A is the number of points per element.

The proposed PSE method was tested on the two-dimensional
Poisson equation, V3f = 2¢***, based on the configuration shown
in Fig. 2. In conformity with the description in this section,
Fig. 2 depicts that four blocks (or parent elements) are chosen
in the & (circumferential) direction, and each block contains
three family elements in the # direction, ie., n = 1, 04,
—0.4, and —1. The numerical results, compared with the exact
solution f = ™%, exhibit exponential convergence with an
increasing number of points per element.

3. PRIMITIVE VARIABLE FORMULATION

In tensor notation, the time-dependent Navier—Stokes equa-
tions in dimensionless form can be described as
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du; du; _ ap 1 3% (10)
ar  “ax  ax, Reox: .
i
Z= (10b)
dx;

Here u; is the velocity component and Re is the Reynolds
number.

The method applied to solve the Navier—Stokes equations
is Chorin’s [3] splitting technique. According to this scheme,
the equations of motion read

auf (:)p
—+L=F 11
at ax[ i . ( )
where F, = —u; du/ox; + (1/Re) 82u/ox].

The first step is to split the velocity into a sum of predicted
and corrected values. The predicted velocity is determined by
time integration of the momentum equations without the pres-
sure term

uitl = ui + AtF7. (12)
The second step is to develop the pressure and corrected

velocity fields that satisfy the continuity equation by using
the relationships

n+l htl Ata_p

ut = P (13a)
a ;1+l
:x_ -0 (13b)

Here the superscript # denotes the ath time step. Note that the
size of a stable time-step A¢ can be increased by using an
adaptation of Runge—Kutta techniques [16] for the high Reyn-
olds number and the Stokes solution for the low Reynolds
number [9], respectively.

Using the explicit scheme of Chorin’s splitting technique,
the calculation of the predicted velocity, &;, in the three-dimen-
sional transformed coordinates £, n, { is straightforward. The
corrected velocity, Eq. (13a), and the continuity equation, Eq.
(13b), now becomes

w=u—At(é.pet mp,+ Lpy) (14a)
v=0—= A&t mpy t Lipg) (14b)
w=w— At(fzpf + NPy + §:Pg) (14C)
and
§xu§ + 7?1”1, + gx“{ + g_vvf + "7qu + g_\'vf (15)

+ §2w§+ Wy + g’zw.{: O’
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where u, v, w are the cartesian velocity components in the x,
v, and z directions, respectively, and the coefficients inside the
brackets of Egs. (14) correspond to the pressure gradients p,,
. and p,. The derivatives of the metric coefficients £(x, y, z),
n(x, v, 2), and {(x, y, z) related to the transformed coordinates
X(f, s g)’ Y(fa 2 (); and Z(f, n {) are giVCl’l by

£ =T ¥z — ¥i29) E= -]7"(—’54’371 — XyZrh

gz = jil(xnyf - xfyrr)

no=J 7N veze — yez), My =IOz — x0ze),

(16)
7. = J 7 gy — Xeyp)
é’x = Jﬁ](y?z‘} - yﬂzf)1 gy = ']—l(xvjz§ - xfzq)’
g: = Jﬁl(xfyn - xn)’f)
and the Jacobian is J = x;y,2; + X Yein t Xp¥eZe — XgViZy —
XoYely = Xy¥nls-
Taking the divergence operator to Eqs. (14a), (14b), (14c)

in order to satisfy the continuity equation (15), the pressure
equation in the interior has the form

gx(px)f + nx(px)n + gx(px){ + gy(py)f + n)‘(p_\')n

+ g_\'(p):){ + fz(pz)ﬁ + n:(PZ)n + é’z(p:)g
- At_l {fxﬁf + 'T]Xﬁ,? + fxﬁg + f_vﬁg

(17)
+ nyan + g.vﬁs' + nzwn + gzw{}
and the supplemental pressure equations at the boundaries are

gx(p:r)f + §y(P_v)§ + fz(Pz)g

= A NEW + oyt Lu + ED+ o+ Ly, {(18a)
+ ‘fzwf + Wy + (::Wg}
in the £ direction, as well as
nx(Px)r,l + ny(py)n + nz(pz)r,‘ = AI_]{§1M§+ T’XETJ + gxu{' (18'))
+ §yvf + 'qy-[;,? =+ §yv§ + §5W§ + T]‘._Wn =+ {zw;}
in the n direction and
gx(px)( + (y(Py)f + gz(p:){ = Atil{‘fxuf + nxun + é’xﬁ{ (ISC)

+ E)‘UE + Uy + {yﬁi +§zwf + MWy + é’zwg’}

in the ¢ direction. Note that whenever solving Eqs. (17) and
(18) the identity of Eqs. (14) should be utilized to absorb the
given boundary conditions of the velocity components [8].
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4. ITERATIVE PRECONDITIONED METHOD

If p satisfies Egs. (17) and (18), then u"*! does indeed satisfy
Eq. (13b). The solution of the pressure equations (17) and (18)
is the most computationally expensive step. For some simple
geometries it can be directly solved numerically by separation
of variables [8]. In general there is no simple method for direct
solution and one must resort to iterative techniques. The quality
of a solution is directly related to the accuracy with which
the incompressibility condition is satisfied. Eq. (17) is of the
general form

Ip=3§ (19)
for some linear operator L on some finite dimensional vector
space. The properties of the operator L depend on the methods
chosen to represent the fields and their derivatives. Very effec-
tive techniques are known in the event that L is positive definite
and symmetric.

Although in general the operators L arising in our work are
not positive definite symmetric, the alternative is to actually
solve an approximate problem whose solution can be easily
related to that of the original problem. This technique is called
preconditioning. There have been a lot of efforts to choose
efficient preconditioned matrices, such as finite difference
method [4, 5] or finite element method {17, 18] for spectral
solutions of Eq. (19). We have adapted the preconditioned
minimal residual methods [4] to our work as follows. Instead
of Eq. (19) we solve

LG Lp=L.'S, (20)
where the preconditioner L, a certain separable operator which
allows a fast solution [19], can be chosen and constructed
from the original operator L of Eq. (17), by linearizing every
nonconstant metric coefficients; ie., &(& 7. {) £(& n O,
and &,(£, n, {) are approximated by a function of E(E), fy(g),
and £,(£) alone, and so.are the other metric coefficients. The
chosen structure of L, should be easily invertable by an eigen-
function technique such that

Lyp = EOIEEP:); + E(ONEDDele + EONEED:):
+ 2l (mp, ), T B, 1, + (i (mp,],

+ L(OLDp + L (Op; + LOLDOp:s,
Q1)

where &, £, &. %, My, M, & £y, £ are metric coefficients.

A good preconditioner requires (i) less memory and inexpen-
sive effort to invert the resulting matrix and (i1) a fast conver-
gence rate. The second requirement implies that the precondi-
tioner L,, should be close to the original operator L; i.e., the
spectral condition number k, the ratio of the maximum and

HWAR-CHING KU

minimum eigenvalues of ||L;'L|, should not be large. The
iterative procedure then reads as follows:

Given p® compute r® = § — Lp°, z° = L_'r® A" = z". Then,
fork =0,1,2, .., undl |rf| < g do

ptt = pt 4+ ath* (22a)
rh =t — o LhF (22b)
= L;,;I pEHL (22¢)
where
(rk, Lhk) (sz-l-l’Lhk)
A . 2
ey BT (22¢)

Here, ( , ) denotes the inner product. Let z*F in Eq. (22c),
k = 1, be expanded in a series of eigenfunctions such that

2" =E£2 En"EL, (23a)
and, similarly, the residual r* is expanded such that
rf = E(RFEnTELT (23b)

With the eigenfunction expansion techmique, the solution of
the three-dimensional preconditioned Eq. (22¢) can be reduced
to the simplest algebraic form,

(o + B+ videhiu = rijn (24)
where «;, 8;, and v, are the eigenvalues with respect to the
discrete derivative matrices of the linear preconditioner, L, of
Eq. (21), and E¢, En, E{ are the corresponding eigenvectors
associated with each eigenvalue. However, eigenvalues may
not be real due to the complexity of a preconditioner. Without
putting any restriction on eigenvalues, complex eigenvalues
and their associated eigenvectors are permitted if the pressure
gradient at the imaginary part vanishes. This is true because
only the pressure gradient drives flow, instead of the pressure
itself. Note that if there are N degrees of freedom in each
direction the overall memory required for finding the solution
to the pressure equation in three dimensions is O(N?). This is
the same type of maximally storage efficient scaling that we
have for the velocity field.

Based on the Xu er @l. [7] multi-level preconditioned minimal
residual method the adding parameter A (3 << A << 1) improves
the preconditioned matrix property (especially pronounced for
those problems hard to reach convergence), af + L, L, rather
than the original L2'L, which enables a successful implementa-
tion of the preconditioned minimal residual method. In view of
this scheme, the pressure equation, Eq. (20), can be adequately
replaced by the following form, accordingly,

(AT + L) L)p™'=L;'S + Ap™. (25)
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It is obvious that two iteration loops are required, the outer
loop “‘m’" (damping the Jacobi method) and the inner loop
*k” the preconditioned minimal residual method alone). The
parameter A (0 << A < 1) is determined by a balanced conver-
gence between these two loops.

Without going through a complicated flow problem, let us
examine the same test problem (Poisson equation) in Section
2 by utilizing 49 X 37 points. Starting from the “*zero’’ guess,
it takes 20, 40, 60, 80, 100, 120 iterations to reach ||Lp — ||
= 3.48E + 1, 6.01E-1, 1.O4E-2, 8.64E-5, 1.34E-7, and 2.63E-
10, respectively. The A effect is not obvious due to the
smooth convergence.

In practical application, the A effect still takes into account
the ill-conditioned matrix resulting from the pressure equation.
The A is chosen as 0.75 in all numerical experiments, while
the choice of the three outer loops and four to six inner loops
will be sufficient to reach the convergence criterion.

5. DOMAIN DECOMPOSITION WITH MULTI-GRID SAP

The solution of flow over complex geometry via the domain
decomposition approach consists of first dividing the computa-
tional domain into a number of blocks (or subdomains) with
inter-overlapping areas, where the grids inside the overlapping
area may Or may not be located at the same places. Next
implement the SAP for exchanging data among blocks, i.e.,
solving the problem on each block separately and then updating
the velocity field on the overlapped interfaces, The extension
of the SAP technique for the solution of incompressible flow in
curvilinear coordinates will be straightforward by the proposed
preconditioned method. The advantages of this approach in-
clude (i) less memory access, local rather than global memory,
and {i1) easy treatment of complex geometry.

The success of the single-grid SAP scheme applied to the
incompressible flow lies in the unique use of the continuity
gquation as the pressure boundary condition (high-order gradi-
ent) in the overlapping area [9]. The residual (/, norm) of the
flow field, the velocity difference between two subdomains in
the overlapping area, can be reduced by one order of magnitude.
In most cases, it takes four SAP iterations to sufficiently mark
down the residual index to Q(10~%-0(107%). In addition to the
Lagrangian constraint between the pressure and velocity fields,
the noncoincident overlapped grids in the inter-overlapping
areas among subdomains even enhances the difficulty of
applying the multi-grid technique. However, the idea of
“‘coarse-grid correction” is still effective to reduce the high
frequency error from the interpolated residual of the fine-grid
subdomain. The strategy behind the coarse-grid correction pro-
cess is to adopt the idea proposed by Thompson and Ferziger
[20] and is modified by [11] as

Veru, ~ Vo (hup) = I = Vi) (26)

Here V, - represents the operator of divergence on the coarse-
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FIG. 3. Configuration of domain decomposition (multiple blocks).

grid subdomain, £ is an interpolation operator from the fine-
grid subdomain f to coarse grid subdomain ¢, and u is the
velocity components; r; is simply the result of the divergence
of the velocity field which should be set to zero. The left-
hand side of Eq. (26) is the difference between the coarse-grid
operator acting on the coarse-grid subdomain and the coarse-
grid operator acting on the interpelated fine-grid subdomain
(which is held fixed}. The right-hand side of Eq. (26) is the
interpolated residual of the fine-grid subdomain. 1t is obvious
that, once the solutton of the fine-grid subdomain has been
found, the residual will be zero (exactly satisfy the pressure
Poisson equation), and it implies that
u, = u,. 27N
When the residuat is non-zero, Eq. {26) acts as a forcing term
for the coarse-grid correction to transfer the correction of veloc-
ity field back to the fine-grid subdomain, i.e.,
ury = + I (u, — ). (28)
This is vital for the success of the scheme. Changes in the
velocity field are transferred back to fine-grid subdomain rather
than the velocity field itself. Note that when the overlapped
grids in the overlapping areas are collapsed at the same places
the interpolation operator /£ becomes a unitary matrix.

The muiti-grid SAP iterative solution of the incompressible
Navier—Stokes equation in primitive variable form for flow
over a cylinder sketched in Fig. 3, for example, is summarized
by the following algorithm:

1. First assume that w™*’ is on AB. Usually u® will be a
good initial guess.

2. Solve fine-grid domain 11, employing the boundary con-
ditions derived from the divergence of the velocity field, includ-
ing on AB, where the pressure solution is obtained by the
preconditioned method.

3. With the interpolated solution of u**' from step 2 on
domain III C 1, solve the coarse-grid domain I, employing the
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FIG. 4. Three-dimensional configuration of domain decomposition,

same type of boundary conditions, including on €D, to update
u"! on domain IIT C 1I by the coarse-grid correction process,

4, Repeat steps 2 and 3 until the velocity u™*' on AB, CD
does not change.

In order to guarantee that consistent values of velocity (or
pressure gradient) be generated in the overlapping domains 11T,
satisfying Eq. (27), the divergence of velocity field V - u needs
to be actually computed in whichever domain [ or I is counted
[21]. Since v on domains III is not known a priori, the diver-
gence of the velocity field is only set to zero at the first SAP
iteration for step 2. According to this approach, the continuity
equation is satisfied on domains [ and II, but not on domain
III C 1, which is revealed from Eq. (26) that the continuity
equation is only satisfied on the fine-grid domain II. However,
the error index of the continuity equation on domain III C I
will indicate how good the interpolation is (affected by the
layout of overlapped grids) and whether any steep change of
flow field exists.

The single-grid SAP iterative solution of the three-dimen-
sional bifurcation flow (Fig. 4} is implemented in a similar way
and is illustrated as follows:

I. First assume that u"™ on (JABCD and (ICDEF. Usually
u” will be a good initial guess.

2. Solve domain TI1 U IV employing the boundary condi-
tions derived from the divergence of the velocity field on
OABCD and [JCDEF, where the pressure solution is obtained
by the preconditioned method.

3. With the solution of u™*' on T1ICDGH from step 2, solve
domain I U IIT and IT U 1V, employing the same type boundary
conditions on OCDGH to update u™"' on JJABCE and OCDEF.,
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4. Repeat steps 2 and 3 until the velocity u™™' on CJABCD,
OCDEF, TICDGH does not change.

6. RESULTS AND DISCUSSION

6.1. Radiation Boundary Conditions

Before going through the numerical results of tested prob-
lems, let us first focus on the issue of what kind of downstream
boundary conditions should be applied. As we know, appro-
priate outflow boundary conditions are required when the calcu-
lations are performed in open domains without making a fully
developed flow profile assumption far downstream, and these
conditions should have little influence on the upstream flow
development. Most often used downstream boundary condi-
tions on the truncated domain, the zero of the first or second
derivative of the velocity field in the flow normal direction
(dufdn = 0 or 9*u/dn® = 0), are not valid for strong shedding
or wave-like flow. Nevertheless, so far the best downstream
condition treating wave flow is the Sommerfeld radiation condi-
tion [22]. It prescribes that

¥ c2_y

29
dt an (29)

where ¢ is any variable and C is the phase velocity of waves.
However, it is difficult to find the accurate phase speed, and
numerous varieties to approximate the phase speed have been
given by [22], but none of them can adequately impose the
global mass conservation constraint. Gresho [23] further modi-
fied the Sommerfeld radiation condition as

6,‘ au,-
duy o

=0. 3
at on 0 (30)

Here the constant phase speed C is taken as the average speed
of streamwise flow at the downstream position. When integ-
rating Eq. (30) over the cross section where the flow passes
through, it is apparent that the downstream velocity predicted
according to Eq. (30) indeed satisfies the global mass conserva-
tion. Thus, Eq. (30) will be utilized to prescribe the downstream
flow conditions for all the numerical simulations.

6.2. Flow over a Cylinder

Davis et al. [24] investigated the effect of confined walls
(the blockage ratio) on the vortex shedding behind a square

L]

[ELL

IR |

11y 1| I

FIG. 5. Grid generation by the isoparamelric mapping method.
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TABLE I
Summary Chart of Computational Data

Re 100 250 500 1000
Elements® 6 X 4,12 X3 13 X8 lex6 16 X 8,16 X9 17TX9, 17X 10

Ar 0.006 0.005 0.005 0.007

Cp 1.330-1.358 1.185-1.344 1.212-1.481 1.187-1.651

C, ~0.228-(1.228 —(.650-0.650 —1.030-1.030 —1.242-1.242
Strouhal number 0.1675 0.2045 0.2203 (1.2326

* 8ix points per ¢lement.

cylinder up to the Reynolds number of 1000. They also studied
the effect on the resulting forces experienced by the body, For
flow passing over a circular cylinder few papers [25, 26] have
been experimental in nature and have generally studied the
turbulent characteristics for the high Reynolds number, but the
study on the laminar flow is far less addressed. The blockage
ratio is chosen as D/H = § in this numerical experiment, and

the diameter D of a cylinder is placed symmetrically between
two walls a distance H apart. The inlet parabolic velocity profile
is prescribed, while the radiation boundary conditions for the
outflow velocity profile are employed, The computational grids
generated by the isoparametric mapping are displayed on Fig.
5. Two distinct subdomains can be clearly visualized, one
{coarse-grid subdomain) with the Cartesian grids and another

0 5 10 15 20

FIG. 6. Time history of drag Cp, and lift C; coefficients for flow over a cylinder at (a) Re = 100, (b) Re = 250, {c¢) Re = 500, and (d) Re = 1000.
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FIG. 7. Full-cycle time history of streamline plots for Re = 100 at time
@t=0,)=02T, ()t =047, (d)t = 06T, (e}t = 08T, and (f}+ = T.

(fine-grid subdomain) with the O’ grids. The overlapping
area is not explicitly shown in the figure, but just imagine the
extension of one more element from the Cartesian grids into
the “‘0”" grids.

As expected, when the Reynolds number exceeds the critical
value any slight disturbance to the flow field will eventually
trigger vortex shedding. The simulation starts right after a fully
developed flow in a channel! is suddenly blocked by a circular
cylinder at time ¢ = 0. A zero value of vertical velocity along
the symmetry line behind the cylinder persists until the loss of
symmetry occurs due to the onset of flow instability. All the
input data and numerical results are listed in Table L.

The Strouhal number is defined as § = fD/U ., where fis
the shedding frequency, D is the diameter of a cylinder, and
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U is the maximum inlet velocity. The four-cycle time history
of the drag coefficient Cp, and the lift coefficient C, are plotted
in Fig. 6, and it is no surprise that both increase with increasing
Reynolds number. Figures 7-10 provide a full-cycle time his-
tory of streamline plots for the different Reynolds numbers,
and incidently they all confirm the success of the radiation
outflow conditions applied on the truncatzd domain, Since the
intensity of the vertical velocity along the symmetry line behind
the cylinder fast grows as the Reynolds number continuously
increases, any inappropriate downstream flow conditions will
definitely influence the upstream flow development. The Strou-
hal number tends to increase with increasing Reynolds number
and is quite different from the case of a square cylinder investi-
gated by [24}, who found the Strouhal number continuously
increased up to the maximum at the Reynolds number around
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FIG. 8. Full-cycle time history of streamline plots for Re = 250 at time
@t=0,b01t=02T, () e=04T, Dt = 06T, ()t = 08T, and (N ¢ =T.
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250 and then slowly decreased to an asymptotic value with
increasing Reynolds number. The difference may be attributed
to the sharp edge of the square cylinder that causes an additional
separation close to the walls at the high Reynolds number,
besides the primary circulation in the wake and the secondary
bubbte on the surface of the cylinder.

The most striking phenomenon observed is that two second-
ary bubbles coexist on the surface of the cylinder when the
Reynolds number becomes 500 (Fig. 9b) or higher (Figs. 10a,
10e, 10f). So far the author could not find any published fitera-
ture to confirm this point, but he does believe that they indeed
exist with accurate numerical schemes.

6.3. Bifurcation Flow

Bifurcation flows are encountered in many situations such
as blood flow in branching arteries, jet injection into a ducted

25
b
E
b
23
¢
o ]
0 5 1 15 20 25
d
e
10 15 bl 5
f 4

0 3 10 15 0 25

FIG. 9. Full-cycle time history of streamling plots for Re = 500 at time
(@)1= 0,{b) 1 = 02T, (¢) t = 04T, (d) t = 0.6T, () r = 0.87, and Hre=T
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FIG. 10. Full-cycle time history of streamline plots for Re = 1000 at time
@ ¢=0,(b)r =027, (c) 1 = 04T, {(d) r = 0.6T, (¢) t = 0.8T, and =T

cross flow, and so on. The understanding of bifurcation flow
seems extremely important, especially in the immediate vicinity
of the junctions by the bifurcating process, where the steep
change of wall shear stress or separation from the bifurcation
point might occur. The two-dimensional flow model only pro-
vides a simple view of this problem, but many of the important
effects cannot be adequately described by it; instead, the three-
dimensional flow problem is best modelied towards the realistic
approach to give insight into the understanding of bifurcation
flow.

The streamfunction-vorticity formulation is widely used for
the two-dimensional bifurcation flow simulation [27, 28], while
for the three-dimensional flow the primitive variable formula-
tion [29] would be the least complicated form and is superior
to the velocity-vorticity formulation. For the two-dimensional
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500, and {b) Re = 1000,

Streamline pattern for the symmetry bifurcation flow at (a) Re =

bifurcating case, the characteristic velocity and length defining
the Reynolds number is based on the maximum velocity and
half-width of the upstream channel; 10 * 4 elements (6 points
per element) are allocated in the streamwise and transverse
directions along each channel. Parabolic flow profiles are as-
sumed at the inlet. For Re = 500 and 1000 with a branching
angle of 90° (symmetry condition), the flow separates immedi-
ately from the upper or lower wall of each branch, and the
reattachment length, due to the formation of the boundary layer
along the upper or lower wall of the bifurcating branch, is also
prolonged as the Reynolds number increases. The maximum
strearmfunction for Re = 500, 100 is ¢, = 1.3484 (Fig. 11a),
iy = 1.3581 (Fig. 11b), respectively. As for the three-dimen-
sional bifurcation flow, with a uniform depth of /2 in the
spanwise direction, the local block coordinates are drawn in
Fig. 12, In addition to having the same number of elements in
the streamwise (&) and transverse (£) directions as in 2D, three

a
1l &
- 2D
0.8 ¢ 3D
0.6 o
¢ 3
0.4 &
&
o
0.2
0 4 I P L
-0.2 0 0.2 0.4 0.6 0.8 1

u
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FIG. 12. The local block coerdinates of three-dimensional bifurcation flow.

elements were used in the spanwise direction (7). At Re = 500,
three-dimensional streamwise (#) and transverse (w) velocity
profiles on the spanwise central plane (n = 0.707) at the bifur-
cating position £ = 0 and downstream 0.99 (Figs. 13 and 14)
were compared with those computed by the two-dimensional
flow model. As expected, due to the finite domain in the span-
wise direction, the three-dimensional velocity profiles will devi-
ate from the two-dimensional ones: an underestimate of stream-
wise velocity profiles, as well as a little overestimation of the
transverse velocity profiles, by the two-dimensional flow model
as seen in Figs. 13 and 14, respectively.

7. CONCLUSIONS

The solution of two- and three-dimensional flow over com-
plex geometries has been solved by the pseudospectral element

J.h &
- 2D
0.8L0 o 3D |
0.6 |
7 i
0.4 &
&
0.2 o% |
b I
0 4 i ] |
-0.2 0

0.2 0.4 0.6 0.81‘1 lﬁ

FIG. 13, Three-dimensional streamwise velocity profile for Re = 500 on spanwise central plane at the (a) £ = 0 (bifwrcating position), and (b)

¢ = (199 (downstream).
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F1G. 14. Three-dimensional transverse velocity profile for Re
£ = (.99 {downstream},

500

method via the multi-grid domain decomposition technique.
The governing equations are the Navier—Stokes equations in a
primitive variable form. The computational domain divides into
a number of simple subdomains with the inter-overlapping
zone, of which the overlapped grids may or may not coincide
at the same places. During the data exchange among the subdo-
mains, the multi-grid SAP technique is used to eliminate the
high frequency error due to the data interpolation between the
fine-grid subdomain and coarse-grid subdomain.

With an isoparametric mapping technique, the generation
of computational grids for each subdomain could be easily
achieved. The resulting pressure equation in each subdomain
which contains a non-separable operator can be efficiently
solved by the multi-level iterative preconditioned minimal re-
sidual method.

The modified radiation outflow boundary conditions have
been found to be the best fit to meet the requirement of the
global mass conservation constraint, as well as little influence
upon the upstream flow development. Both the flow over a
cylinder in a channel and the bifurcation flow clearly demon-
strate the versatility of the proposed method.
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